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Abstract. Starting from a pr0p0~al of Volonk we investigate surface point. line, and wall 
defects with the aid of relative homotopy groups. The exact sequence of homotopy groups 
is used in interpreting the relations betwem surface and bulk singularities. In particular, we 
consider the possibilities for surface singularilies to move into the bulk, for bulk singularities to 
leave the medium through the surface, and for singular loops to be broken apart by he surface. 
The theory is extended to the case where the surface induces a thermodynamic phase differing 
from that in the bulk. An example is given of a biaxial nematic surface with the Klein bottle 
as the order-parameter space. Due to the fundamental theorem for homotopy groups of fibre 
bundles, the classification scheme of surface defects is identical for all pairs of bulk and surface 
order-pmmeter spaces which are relaed by an inverse-bundle pmjection. 

1. Introduction 

Ordered media, such as nematic liquid crystals, s-type superconductors, supemuid 3He or 
quantum matter fields in cosmological theories, are described as continuous mappings from 
real space to a reduced order-parameter space (ROPS) [I]. For nematic liquid crystals, which 
are anisotropic fluids due to a spontaneous alignment of the molecular long axes, the reduced 
order parameter is the local optical axis [2,31, and the ROPS is the set of rays through the 
origin, the projective sphere Pz. For s-type superconductors the ROPS is the set of phase 
factors, forming the circle SI. For the supertluid phases of 3He many ROPS exist, depending 
on the energy scale, the simplest being the orthogonal group SO(3). For cosmological 
quantum fields it is the set of degenerate vacuum states, whose shape depends on the grand 
unification model used and in the simplest cases is either a circle  or an n-sphere [4]. 

At a surface or an interface, ordered media can display an enormous wealth of 
phenomena, and these have been addressed in many papers during the last decade (for 
a review see [5]).  Far from transition temperatures as a rule the ROPS are restricted at the 
surface to a subspace. On nematic surfaces only a subset of orientations of the. optical 
axes (the ’directors’) is admitted, as, for example, a tangential, conical or orthogonal 
(‘homeotropic’) orientation. The ROPS is thus reduced from the projective plane P 2  to 
the projective line P’, the circle S’ or a point, respectively. The physical origin of this 
‘anchoring’ along selective direction: is a subject of intensive investigation. 

Denote the ROPS by V,  its restriction to the surface by A c~ V .  Bulk defects were 
classified at the end of the seventies by the homotopy groups of V and z,(V) [1,6-10]. 
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For the classification of surface defects, the homotopy groups of A and rr,(A) have been 
applied [ll]. 

But bulk and surface defects are not mutually isolated. An essential step to connect the 
singular order-parameter fields on the surface with their neighbouring volume was made by 
Volovik [121. He proposed to surround a surface point defect by a hemisphere D", n = 2, 
whose boundary aDn lies in the surface, and to consider the mappings (D", aDn) --f (V ,  A) 
from this hemisphere into V ,  and from its boundary into A. Hence surface point defects 
are classified by the relative homotopy groups nn(V, A), n = 2. 

The three types of homotopy groups are related by an exact sequence of 
homomorphisms, which has been exploited by Volovik to calculate nz(V, A). But the 
exact sequence allows much more interpretation. For the classification of surface defects of 
dimension r = 2  - n, n = 2, 1,0, in section 2 we use it to answer questions such as which 
surface defects can be restricted entirely to the surface, which must continue into the bulk, 
which can leave the surface and move into the bulk? Which bulk defects can terminate at 
the surface, which can leave the volume through the surface, which cannot approach the 
boundary? We also discuss the question under what circumstances a surface is able to break 
up defect loops. 

Close to a phase transition temperature, the surface may be covered by '  another 
thermodynamic state of the medium, for example, on a free nematic surface, smectic 
layers may be forming [5 ] ,  hence new types of order can emerge, requiring an exremion of 
the order-parameter space. Defects arising in a sequence of two phase transitions, when the 
unbroken symmetry group G is broken into a subgroup HI < G and from there further to 
a subgroup HZ < H I ,  have been extensively dealt with by the present authors [16,10,14] 
under the heading 'semidefects' and, in cosmological field-theoretic models under the name 
'hybrid defects' by [15,16]. In section 3 we make an attempt to classify singularities 
on phase transforming surfaces by combining the concept of semidefects and Volovik's 
classification concept hy relative homotopy groups. Parts of this concept are realized in a 
classification scheme of Misirpashaev 1171 for defects at a phase interface. 
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2. Surfaces restricting the reduced order-parameter space 

We assume now as above, that on the surface considered the ROPS V is restricted to a 
subspace A. To be precise, in the following we denote the defects described by n,(A) as 
'boundary defects', and those characterized by &(V, A) and taking regard of the nearby 
bulk structure as 'surface defects'. 

The three types of homotopy groups are related by the exact sequence of 
homomorphisms [18]: 

(1) 
i . . .-$ no( V )  3 nn(V,  A) 3 nn-l (A) 5 nn-, (V) '2ii . . . 

where in and j, are inclusion homomorphisms and 8, is the boundary homomorphism. 
The sequence has been used by Volovik to calculate the relative homotopy group 

nz(V,  A) by applying the isomorphism theorem nz(V,  A)/ker(&) = Im (82) together with 
the exactness properties of the sequence ker (as) = Im(j2) and Im&) = ker(i1) to show 
that 

n z ( V ,  A)/Im (j2) = ker(i1). (2) 

z2(V, A) now results as a group extension Ext(Im(i2), ker(i,)) [l], its elements being 
pairs (or, 0). or E Im (jz) labels the image under j z  of a bulk point singularity transferred to 



Figure 1. Exaet sequence of homotopy groups. For the interpretation see the text. 

the surface, and E ker(i1) labels the enclosed boundary point singularity. In many cases 
this group extension is a direct product [12] (see also the discussion in [19, p 2041. 

But the exact sequence contains much more information, which we illuminate and depict 
in figure 1. The outer circles symbolize the full group, the inner circles the image of the 
preceding mapping, which due to the exactness property equals the kernel of the following, 
and the point the unit element. 

In general, the sequence terminates at R I ( V ) ,  as the subsequent sets must not have a 
group structure. There ire many instances, where a group structure can be imposed (see 
the discussion in [IO, p 215]), and in the following we assume this to be the case. 

The different parts of the circles can now be interpreted in the following way: 
(1) Elements of ker ( j z )  correspond to bulk defects, which may penetrate through the surface 

and leave the volume, as, after being surrounded by the hemisphere, they belong to the 
trivial element of zz(V, A ) .  

(2) Elements outside ker(jz) cannot escape . 
(3) The homotopy group rrz(V, A) classifies fields, which are~contained in the hemisphere, 

i.e. surface point defects with a bulk structure and bulk point defects, but not boundaries 
of bulk line singularities. Only those surface defects, whose group elements are in 
Im ( j z )  can move from the surface into the bulk, as their inverse images correspond to 
bulk defects. Due to the the exactness property Im ( j z )  = ker (32) they are mapped to the 
trivial element of a , ( A ) .  Hence they are unstable as pure boundary point singularities, 
in contrast to: 

(4) elements of ]t*(V, A)\Im(j$, which do not have a correspondence among the bulk 
point singularities, hence cannot move into the bulk and are stable as boundary point 
singularities. 

(5) Boundary point singularities are tested by a Burgers circuit. Those belonging to ker(il) 
are unstable if extended into the bulk. 

(6) But there are also those taken into account, which are continued along a line into 
the volume. They correspond to elements outside of Im(az), as these lines cannot be 
confined to the hemisphere. Due to Im (a,) = ker (it) they are mapped to the classes 
for stable bulk line singularities. 

(7) Among the bulk line defects the exact sequence determines those which can terminate 
on the surface, Im (i,), as they have a correspondence' with boundary point singularities, 
al(A).  Surprisingly, these can &ape through the surface, because they also belong 
to ker(j1) and are mapped to the trivial element of nl (V,  A), which describes surface 
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Figure 2. Tubular surface surrounding a line singularity which is connected 
with both ends to the boundary. 

wall defects. 
There are, however, circumstances possible, which nevertheless prevent the escape. A 
closed line singularity can also cany a point charge [lo]. If such a loop touches the 
surface, and if its line characteristics belongs to Im(il), it can break and be connected 
with the boundary at two points. A tubular surface testing can be extended to a hemi- 
sphere (figure 2). When the corresponding element of x2(V, A) is outside ker(j,) the 
loop is not able to leave the volume through the boundary. 

( V )  outside Im (il) cannot terminate on the surface. They either form 
closed loops, or they contribute to the volume structure of surface wall singularities, 
since their image under j 1  is not hivial. 

(9) The line surface singularities of Im ( j l )  can leave the surface to form bulk line singu- 
larities, according to their inverse image, but they also are unstable if considered as 
boundary line defects under the mapping a,. 

(10) Elements of nl(V.  A)\Im ( j , )  must stick to the boundary, cannot move into the bulk, 
and contribute to stable boundary lines. 

(1 1) Elements of ker (io) are pure boundary line singularities and do not bound walls in the 
bulk, whereas: 

(12) elements of xo(A)\ker (io) are mapped to stable bulk walls, which they bound. 
(13) Elements of ker (jo) describe walls in the volume, which terminate at surface line 

singularities and can escape through the boundary. 
(14) Finally, the elements of no(V)\ker(jo) label walls separating the boundary and the 

bulk, as their image, of no(V, A), takes values in the bulk and on the boundary, which 
belong to different connected components of the ROPS V .  

Let us apply these interpretations to the standard example of a nematic liquid crystal. 
If tangential boundary conditions prevail, V = Pz and A = P'. The relative sequence is 
nowt 

(8) The elements of 

... 3 n2(p2) 4 n 2 ( P 2 , p 1 )  4 nl(Pl) 4 rl(P2) 5 Z I ( P 2 , P l )  3 Z0(P') 3 ... 
22  + Z Z X Z  + $2 -* 22 -* 0 + o  

(3) 
2 - (2.0) " rr (2"))modZ 

(2.U) * U UI * 0. 

No stable bulk point singularity can leave the volume through the boundary 
(ker (jz) = 0). Only surface defects of type (GO), forming ker(a2). can move into the bulk. 
Boundary point defects of half-integer winding number extend as line singularities into the 
bulk, those of integer winding number are without bulk structure, as Im(a2 = ker(i1) = Z. 

t The integers denote P winding number, which we define as multiples of k. Winding numbers of spheres, 
which nre multiples of the full solid angle 472, hence are wnsidered as even integers, and n 2 ( P 2 )  is denoted by 
22. x2(P2.  PI) is denoted by 22 x Z. 
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All bulk line singularities can terminate on the surface, because Im (i1) = Zz = KI (P'), 
all can leave the volume through the boundary (Im(il) = ker(jr) = x l ( P 2 ) ) .  There are 
no surface Iine singularities, because Im(jl) = ker(al) = 0, and 81 is injective, thus 

Loop defects can break up when they touch the boundary. Considered as surface point 
defects, they are labelled by an element (2, 0) E 22 x 2. If the first entry z of the pair is 
non-zero, they cannot leave the volume. This may be one reason why disclination lines, 
which are characteristic for the nematics, do not escape through the boundary. There may 
fnrther be terms in the Frank-Oseen energy [3] preventing it, but also small deviations from 
the tangential boundary conditions. 

The situation changes considerably with conical boundary conditions, A turning into Si. 
The case has intensively been investigated in hybrid alignment films by Lavrentovich and 
Rozhkov [ZO]. The sequence becomes 

Z,(PZ, P I )  = 0. 

... 2 X Z ( P 2 )  * X ' ( P 2 , S O  15 n,(sl) 2 n r ( P 2 )  s Z, (P* .S ' )  3 X,@O 3 ... 

(4) 
22 - z z x z  -+ z + 2 2  -+ 3 + 0 

L ++ (GO) " Y O  

( 2 . U )  H Y w c  w c 0. 

As in the case of tangential boundary conditions, bulk point singularities cannot leave the 
volume through the boundary, and of the surface point singuIarities only the type (z, 0) 
can move into the bulk. However, none of the boundary point sin,darities now extends 
along a singular line into the bulk (ker(il) = al(S')). This is quite obvious, as bulk line 
defects of integer winding number can vanish by escape to the third dimension. Bulk line 
singularities cannot terminate on the surface (Im (;I) = 0) and cannot escape through the 
boundary any more (ker ( j , )  = 0). They either form closed loops, or they contribute to the 
one stable surface line singularity existing. It forms a 180" Bloch wall. Representatives of 
the two classes of paths in nl(P2, SI) are shown in figure 3. 

The situation is stiil changing for homeotropic, i.e. orthogonal anchoring, A = 1 
consisting of one point: 

j, 
.I. 2 X 2 ( P 2 )  ..+ X ' ( P 2 . I )  3 Zl(l) 3 Z,(P') 4 n [ ( P z , I )  31 X"(l) 3 ... 

(5) 

No bulk point singularities can leave the fluid through the boundary, because ker ( j 2 )  = 0. 
All surface singularities can move from the surface into the bulk, since Im(j2) = z z ( P 2 ,  1). 
There are no stable boundary point singularities (irl(1) = O), and no bulk line defects 
can terminate on the surface (Im ( i l )  = 0) or escape through the surface. They merely 
conaibute to surface line singularities (Im ( j l )  = RI (P', 1)). All surface line defects can 
move accordingly into the bulk. 

2 2 -  zz - t o . - , z z +  2' + 0 

Z Y  2 - 0 - 0  
W Y  w Y 0 .  

Figure 3. ROPS V = P', Subspace A = S' and 
representalive loops of rhe two types of homotopy 
classes o f r i j ( ~ ~ . ~ ~ ) .  
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Finally let us consider the surface defects of dipole-locked supemuid 3He-A (see 
also [12]). The reduced order parameter is a right-handed orthonormal tripod (el, ez, l ) ,  
where 1 denotes the angular momentum vector of the Cooper pair. Thus V = SO(3). 
The boundary conditions are such that 1 stands either parallel or antiparallel to the surface, 
which implies A = D, c SO(3). The relative homotopy groups are known from the 
defect structure of uniaxial nematic liquid crystals, because n,(S0(3), D,) = nn(P2), and 
we obtain the sequence: 

n2(S0(3)) 4 nz(S0(3).D,) 2 nl(D,) 2 q(SO(3))  a q(SO(3) .  D,) 5 q ( D d  

(6) 0 -  ZZ - b z - z > - t  22 - zz 
~ - 2  W H  0 

U - (2u)modZ - U. 

The surface point singularities are the well known boojums [Zl]. They are bound to the 
surface and cannot move into the bulk (Im ( j z )  = ker (82) = 0). Boundary point singularities 
of odd winding number bound bulk disclination lines (ker(il) = 2 2  c 2). The bulk line 
singularities, 360" disclination lines in the tripod, can terminate on the surface and are also 
allowed to leave the bulk through the boundary. Finally, there are surface line singularities 
which separate domains of oppositely pointing vectors 1. They cannot move into the bulk 
(as ker (81) = 0), and are identical with the boundary line defects (81 is bijective). 

3. Surfaces inducing a phase transition 

As a surface breaks the isotropy of space, it frequently induces a different thermodynamical 
phase, and phase transitions as a rule set in from the surface. 

If there are different phase smctures in the bulk and on the boundary, it is favourable 
to describe the reduced order-parameter spaces as coset spaces G / H i ,  i = I ,  2, where G is 
the unbroken symmetry group, H I  c G the broken symmetry group in the bulk, and HZ the 
broken symmetry group on the boundary. For simplicity here we deal with the case that 
HZ is a subgroup of H I .  A standard example--easy to visualize-is the transition of an 
isotropic nematic liquid with G = SO(3) to a uniaxial nematic phase, where H = D, is 
the cylindrical symmetry group of the director, and from there to a biaxial nematic phase 
with HZ being the dihedral symmetry group DZ of a cross. Such a transition is predicted in 
theories of surface wetting [ZZ]. 

Defects in the bulk that develop in two successive phase transitions with symmetry 
breaking steps G H I  + H2 have been treated in [14-161. There, one has investigated 
the connectivity properties of the space C / H z ,  which forms a fibre bundle with base space 
G I H I ,  fibre HlIHz ,  and projection 

(7) 

The homotopy groups of the three spaces are related by an exact sequence similar to 

(8) 

p :  G/H2 -+ GIH1 
gHz g H i .  

that of (1) [IS]: 

... 4 n n ( G / H z )  4 n , (G/HI )  3 n.-l(Hl/Hz) 

Here n,(G/Hz)  describes defects in the fully broken phase, n a ( G / H , )  defects in the 
partially broken phase, and n, (Hl /Hz)  defects which arise from a uniform or singularity 
free partially broken phase, denoted as semidefects. The latter vanish in the symmetry 
restoring phase transition 2 + 1, which is described by the projection mapping of (7). If 

A ~ r ~ - l ( G / H z )  %' ... . 
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the partially broken phase 1 contains singularities, these may break in the second step into 
semidefects of one dimension more according to the homomorphism An of (8). 

In the case of surfaces inducing a phase transition the ROPS in the bulk is undoubtedly 
G / H , ,  whereas there is a variety of possibilities for the boundary. In the'most general 
case the ROPS on the boundary is the entire bundle space G / H 2 ,  but anchoring conditions 
might reduce it to a subset U c G / H 2 .  For a uniaxial nematic liquid crystal with a biaxial 
surface this subset could come from tangential anchoring conditions of the major director, 
the second axis pointing orthogonal to the surface, and U being PI, which seems natural 
from the point of symmetry breaking. U can also stem from orthogonal boundary conditions 
of the major director with free rotation of the side axes, and then equals H , / H 2 .  

Whereas in all cases the bulk singularities are classified by homotopy groups n, , (G/Hl ) ,  
and the boundary singularities by nn(U c .G /H2) ,  the classification of surface point 
singularities is done by the homotopy classes of mappings of the hemisphere D2 into the 
following spaces: 

f :  D2 --+ G f H i  
g :  a D z = S i  -+ U C G / H z  (9) 

flaD2 = p l U o g .  
Misirpashaev 1171 has listed these equations for a special set U .  
We denote the set of classes of these mappings, under the assumption that they are 

based, sloppily by n z ( G / H l .  U ) .  If one is taking exact sequences as for the surface defects 
in (1) separately for phase 1 and phase 2, these sets are in between, leading to the following 
commuting d i a p m  of mappings: 
... -+ rr2(G/H2) + n2(G/H2.U) + q(U) + al(G/H2) + ... 

I .  7 

J/ I 
I 7  1 nz(G/Hi.  U) 1 I 7  (10) 

... + nz(G/Hi) + rr2(G/Hi,pU) A n i ( p U )  - q ( G / H i )  +~ .... 
The diagram has to be evaluated on a case to case basis. Here we do it for the following 
wide class of transitions: 

Denote by A C G / H I  the surface order-parameter space of phase 1. If U = p - ' A ,  the 
fundamental theorem for homotopy groups of fibre bundles [IS, p 901 states, that 

n n ( G / H 2 ,  U )  = ~ , ( G / H I ,  A ) .  (11) 
According to the diagram of (lo), n , ( G / H l ,  U )  is equal to these two groups. It follows 

from this very general result, that the classification of suface singularities remains invariant 
in aphase transition, ifthe boundary order-parameter space is being lifted in the same way 
as the bulk ROPS to the bundle space describing the new phase. The statement is valid 
whether the transition happens only at the surface or proceeds into the bulk. A construction 
of  the classifying group according to (9) is not necessary. For the interpretation of the 
surface processes the two parallel exact sequences have to be analysed: 

-+ n2(C/H2) - n212(G/H2.U) + rri(U) + ni(G/Hd + ni(G/H2.U)  -+ r r i W  -+ 

1 /I I J II (12) 
-+ n2(G/Hi) -+ ndG1Hi.A) -+ = , ( A )  -+ ni (G/Hi )  + ai (G/Hi ,A)  + ni,(A) + . 

If U = G / H z  then A = G / H l ,  and there are no surface singularities. 
If A = H I ,  i.e. a single order-parameter value is allowed on the boundaryof phase 1, 

then U = H i / H 2 .  Along a certain chain of the diagram (12) we recover the exact 
sequence of (8) for semidefects. The surface point singularities in the generalized sense of 
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Volovik [12] turn out to be the bulk point singularities in phase 1 with those semidefects of 
nn(U = H I / & )  attached to the boundary, into which they would break in aphase transition 
1 + 2. 

Among the boundary point singularities in KI ( H l / H z )  those are of special interest, which 
are outside Im (Az): when upon cooling the phase transition proceeds from the surface into 
the bulk, they develop into stable bulk line singularities according to the homomorphism 
it. Such boundary point singularities place the seed for line singularities in the bulk. 

As a particular example let us consider a uniaxial nematic liquid crystal (Vu = 
SO(3)/Dm) with a biaxial surface (Vb = S0(3)/&) and tangential boundary 
conditions A = PI. The lift of this  set into SO(3) /& yields an order-parameter space, 
where the major axis of the biaxial cross stays tangential to the surface, and the side axis 
rotates freely about it. The boundary order-parameter space U is determined in the following 
way: place an orthonormal tripod (e,, ez, e3) to the surface, with el and e2 in the boundary 
plane, and e3 orthogonal to it. Orient the main duector along e2, the side axis along e3. All 
the points of U are obtained by rotating the tripod with rotation operators R(or, ,S, y = 0), 
a!, j3, y being Eulerian angles, 0 < or, j3 4 n. or is the rotation angle about e3, turning ez 
into e;, j3 the rotation angle about e;. Due to the identification of points (or, j3 = 0) with 
(a. j3 = n) and of points (or = 0, j3) with (or = K, n - f i )  (figure 4), the manifold U is the 
Klein bottle. These boundary conditions are interesting, as the fundamental group of the 
Klein bottle is non-abelian: nl(U) = ~4Z A i Z  = [(U, U)), Y denoting the winding number 
for the angle or (i.e. of the major director), U for the angle j3 (i.e. of the side axis). The 
semidirect product is defined by 

The Klein bottle is also the ROPS of the striped plane (which could serve as the boundary 
order-parameter space of smectic A liquid crystals in the bookshelf configuration). Due to 
its non-abelian fundamental group a singularity can change its homotopy label when guided 
about another one, as discussed by Po&mu and Toulouse [23] (see also the extensive 
discussion of the case in 119, p 1991. The biaxial nematic surface displays the same 
features, but has the advantage that the restrictions of the topological defect classification 
for systems of broken translational symmetry [9, p 6381 do not apply. 

I 

Figure 4. A Klein bottle as a boundary order-parmeter space 
for a biaxial nematic surface. Points to be identified are marked. 
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The two connected exact sequences of (12) have following form: 

ih ... -+ 0 --z 0 + F + i Z A i Z  4 . Q ~  -+ 0 -+ ;.. 
1 1 II 1 1 II (14) 

i: ... + 0 + 22 + F + &z + z, -+ 0 + ... 
where Q = [H, k i q ,  +iuz, f icq} denotes the quaternion group, cj a Pauli matrix. 

The central part of the diagram is executed in terms of the group elements as 

(u,  u )  A (iuZ)-h(ic3)-2" - 
1 
U H (2u)modZ. 

- 
1 ~(15) 

i: 

Due to the exactness property of the upper row the group F is kernel of 
homomorphism ip, which is the abelian subgroup of i Z  A 4Z generated by the elements 
(2,0), (1, 1) and (0, 2), i.e. by the 4n-rotations of the biaxial cross. From the fundamental 
theorem we h o w ,  that F = n2(P2, P'), which in the exact sequence of (3) has been 
identified as 22 x 2. The second factor denotes the winding number of the major axis 
(corresponding to e,) in multiples of 2n and therefore is to be interpreted as the winding 
number U, the e s t  one as the sum of U and, U. The isomorphism connecting the two forms 
of F hence is 

(16) 

It is to be noted, that with an odd winding number of e2 there is always connected an 
odd winding number of e3 (the side axis), hidden in the uniaxial case. 

Due to the fundamental theorem the homotopy groups nn(V, A )  are identical for all 
pairs of sets, which are related by an inverse bundle projection. Thus (P2 ,  P') shares 
these identities not only with (So(3)/&, U = Klein bottle), but also with (i) (S2, S') for 
a three-dimensional ferromagnet, (ii) (SO(3). T 2 )  for a tripod field, and (iii) (SU(2),T2). 
Here, F2 is the lift of the torus T Z  into SU(2) under the canonical projection, and is the 
central torus in the foliation of SU(2). 

w-, O h  (1, 1). (0,2)) + 22 x z ~ ; 22 x z + ((2,0), (1,  1). (0,2)) 
(U, 4 r; (U+ U, U) ; ( S , t )  H ( t .  s - t )  . 

The respective three exact sequences according to (12) are 

(i) ... + 22 -+ 2 Z x Z  -+ 2 + 0 + 0 + 0 + ... 
(ii) ... -+ 0 + 2 Z x Z  + Z x Z  -+ ZZ + 0 + 0 -+ ... (17) 
(iii) ... -+ 0 -+ 2 Z x Z  + 2 2 x 2  + 0 + 0 + 0 + ... 

although in cases (ii) and (iii) the symmetrical representation of F is more adequate. 

liquid crystals with tangential boundary conditions. 
Thus a deeper understanding is obtained of the surface classification for uniaxial nematic 
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