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Abstract. Starting from a proposal of Volovik we investigate surface point, line, and wall
defects with the aid of relative homotopy groups. The exact sequence of homotopy groups
is used in interpreting the relations between surface and bulk singularities. In particular, we
consider the possibilities for sorface singularities to move into the bulk, for bulk singularities te
Ieave the medium through the surface, and for singuiar loops to be broken apart by the surface.
The theory is extended to the case where the surface induces a thermodynamic phase differing
from that in the bulk. An example is given of a biaxial nematic sarface with the Klein bottte
as the order-parameter space. Due to the funrdamental theorem for homotopy groups of fibre
bundles, the classification scheme of surface defects is identical for all pairs of bulk and surface
- order-parameter spaces which are related by an fnverse-bundle projection.

1. Introduction

Ordered media, such as nematic liquid crystals, s-type superconductors, superfluid 3He or
quantum matter fields in cosmological theories, are described as continuous mappings from
real space to a reduced order-parameter space (ROPS) [1]. For nematic liquid crystals, which
are anisotropic fluids due to a spontaneous alighment of the molecular long axes, the reduced
order parameter is the local optical axis [2, 3], and the ROPS is the set of rays through the
origin, the projective sphere P?. For s-type superconductors the ROPS is the set of phase
factors, forming the circle §'. For the superfluid phases of *He many ROPS exist, depending
on the energy scale, the simplest being the orthogonal group SO(3). For cosmological
guantum fields it is the set of degenerate vacuum states, whose shape depends on the grand
unification model used and in the simplest cases is either a circle or an r-sphere [4].

At a surface or an interface, ordered media can display an enormous wealth of
phenomena, and these have been addressed in many papers during the last decade (for
a review see [5]). Far from transition temperatures as a rule the ROPS are restricted at the
surface to a subspace. On nematic surfaces only a subset of orientations of the optical
axes (the ‘directors’) is admitted, as, for example, a tangential, comical or orthogonal
(‘homeotropic’) orientation. The ROPS is thus reduced from the projective plane P? to
the projective line P!, the circle S' or a point, respectively. The physical origin of this
‘anchoring’ along selective directione is a subject of intensive investigation.

Denote the ROPS by V, its restriction to the surface by A < V. Bulk defects were
classified at the end of the seventies by the homotopy groups of V and x, (V) [1,6-10].
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For the classification of surface defects, the homotopy groups of A and 7,(A) have been
applied {11].

But bulk and surface defects are not mutually isolated. An essential step to connect the
singular order-parameter fields on the surface with their neighbouring volume was made by
Volovik [12]. He proposed to surround a surface point defect by a hemisphere D*,n = 2,
whose boundary 8 D" lies in the surface, and to consider the mappings (D", 8 D") — (V, 4)
from this hemisphere into V, and from its boundary into A. Hence surface point defects
are classified by the relative homotopy groups m,(V, 4), n=2.

The three types of homotopy pgroups are related by an exact sequence of
homomorphisms, which has been exploited by Volovik to calculate m»(V, A). But the
exact sequence allows much more interpretation. For the classification of surface defects of
dimension r =2 — n,n =2, 1,0, in section 2 we use it to answer questions such as which
surface defects can be restricted entirely to the surface, which must continue into the bulk,
which can leave the surface and move into the bulk? Which bulk defects can terminate at
the surface, which can leave the volume through the surface, which cannot approach the
boundary? We also discuss the question under what circumstances a surface is able to break
up defect loops.
~ Close to a phase transition temperature, the surface may be covered by another
thermodynamic state of the medium, for example, on a free nematic surface, smectic
layers may be forming [5], hence new types of order can emerge, requiring an extension of
the order-parameter space. Defects arising in a sequence of two phase transitions, when the
unbroken symmetry group G is broken into a subgroup Hy < @ and from there further to
a subgroup H> < H,, have been extensively dealt with by the present authors [16, 10, 14]
under the heading ‘semidefects’ and, in cosmological ficld-theoretic modets under the name
‘hybrid defects’ by [15,16]. In section 3 we make an atterapt to classify singularities
on phase transforming surfaces by combining the concept of semidefects and Volovik’s
classification concept by relative homotopy groups. Parts of this concept are realized in a
clagsification scheme of Misirpashaev [17] for defects at a phase interface.

2, Surfaces restricting the reduced order-paraﬁleter space

We assume now as above, that on the surface considered the ROPS V is restricted to a
subspace A. To be precise, in the following we denote the defects described by m,(A) a3
‘boundary defects’, and those characterized by m,(V, A) and taking regard of the nearby
bulk structure as “surface defects’,

The three types of homotopy groups are related by the exact sequence of
homomorphisms [18]: -

BN B @S A B ) B 0

where i, and j, are inclusion homomorphisms and 8, is the boundary homomorphism.

The sequence has been used by Volovik to calculate the relative homotopy group
m,(V, A) by applying the isomorphism theorem m3(V, A)/ker (82) = Im (8;) together with
the exactness properties of the sequence ker (3;) = Im (j2) and Im (32) = ker (i) to show
that -

72V, A}/Im (/) = ker (i) . 2)

m2(V, A} now results as a group extension Ext(Im (jz), ker (i;)) [1], its elements being
pairs (¢, 8). o« € Im (j,) labels the image under j; of a bulk point singularity transferred to
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Figure 1. Exact sequence of homotopy groups. For the interpretation see the text,

the surface, and § € ker (§;) labels the enclosed boundary point singularity. In many cases
this group extension is a direct product f12] (see also the discussion in [19, p 204].

But the exact sequence contains much more information, which we illuminate and depict
in figure 1. The outer circles symbolize the full group, the inner circles the image of the
preceding mapping, which due to the exactness property equals the kernel of the following,
and the point the unit element. ‘

In general, the sequence terminates at w1(V), as the subsequent sets must not have a
group structure. There are many instances, where a group structure can be imposed {see
the discussion in [10, p 215]), and in the following we assume this to be the case,

The different parts of the circles can now be interpreted in the following way:

(1) Elements of ker (f») correspond to bulk defects, which may penetrate through the surface
and leave the volume, as, after being surrounded by the hemisphere, they belong to the
trivial element of w3 (V, A).

(2) Elements outside ker (f2) cannot escape .

(3) The homotopy group m2(V, A) classifies fields, whlch are contained in the hemisphere,
i.e. surface point defects with a bulk structure and bulk point defects, but not boundaries
of bulk line singularities. Only those surface defects, whose group elements are in
Im (f2) can move from the surface into the bulk, as their inverse images correspond to
bulk defects. Due to the the exactness property Im { ja} = ker (82} they are mapped to the
trivial element of sty (A). Hence they are unstable as pure boundary point singularities,

in contrast to:

(4} elements of mo(V, A)\Im (j2), which do not have a correspondence among the bulk
point singularities, hence cannot move into the bulk and are stable as boundary point
singularities. ,

{5} Boundary point singularities are tested by a Burgers circuit. Those belonging to ker (£))
are unstable if extended into the bulk.

{(6) But there are also those taken into account, which are continued along a line into
the voleme. They correspond to elements outside of Im (3z), as these lines cannot be
confined to the hemisphere. Due to Im (8;) = ker (i;) they are mapped to the classes
for stable bulk line singularities.

(7) Among the bulk line defects the exact sequence determines those which can terminate
on the surface, Im (i;), as they have a correspondence with boundary point singularities,
7 (A). Surprisingly, these can escape through the surface, because they also belong
to ker (1) and are mapped to the trivial element of 7;(V, A), which describes surface
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A

Figure 2, Tubular surface surrounding a line singulatity which is connected
with both ends to the boundary.

wall defects,

There are, however, circumstances possible, which nevertheless prevent the escape. A
closed line singularity can also carry a point charge [10]. If such a loop touches the
surface, and if its line characteristics belongs to Im (7;), it can break and be connected
with the boundary at two points. A tubular surface testing can be extended to a hemi-
sphere (figure 2). When the corresponding element of mo(V, A) is outside ker(j;) the
loop is not able to leave the volume through the boundary.

(8) The elements of = (V') outside Im (f;) cannot terminate on the surface. They either form
closed loops, or they contribute to the velume structure of surface wall singularities,
since their image under j; is not trivial.

(9 The line surface singularities of Im (f;) can leave the surface to form bulk line singu-
larities, according to their inverse image, but they also are unstable if considered as
boundary line defects under the mapping 3.

(10) Elements of 71 (V, A)\Im (j;) must stick to the boundary, ¢cannot move into the bulk,
and contribute to stable boundary lines.

{11) Elements of ker ({p) are pure boundary line singularities and do not bound walls in the
bulk, whereas:

(12) elements of mo(A)\ker (ig) are mapped to stable bulk walls, which they bound.

(13) Elements of ker (o) describe walls in the volume, which terminate at surface line
singularities and can escape through the boundary.

(14) Finally, the elements of mg(V)\ker (jo) label walls separating the boundary and the
bulk, as their image, of mo(V, A), takes values in the bulk and on the boundary, which
belong to different connected compenents of the ROPS V.

Let us apply these interpretations to the standard example of a nematic liquid crystal.
If tangential boundary conditions prevail, V = P? and A = P!. The relative sequence is
nowy

Bt B oot B omeh B omeeny 4 meeteh 3 omeehy B

4
- 2ZxZ - 12 -~ Z - 0 - 0 3)
2 - .0 ¥ F  [2u)mod2

(z, 1} > u w e 0.

No stable bulk point singularity can leave the volume through the boundary
{(ker (J») = 0). Only surface defects of type (z, 0}, forming ker (8;), can move into the bulk.
Boundary point defects of half-integer winding number extend as line singularities into the
bulk, those of integer winding number are without bulk structure, as Im {(32) = ker (i;) = Z.

t The integers denote a winding number, which we define as multiples of 2. Winding numbers of spheres,
which are multiples of the full solid angle 47, hence are considered as even integers, and 72(P?} is denoted by
22, wa( P2, P1) is denoted by 2Z x Z.
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All bulk line singularities can terminate on the surface, because Im (i;) = Z» = m;(P?),
all can leave the volume through the boundary (Im (§,) = ker (j;} = 7;(P%). There are
no surface line singularities, because Im (j1) = ker(d;) = 0, and 8, is injective, thus
7 (P?, Py =0.

Loop defects can break up when they touch the boundary. Considered as surface point
defects, they are labelled by an element (z, 0) € 2Z x Z. If the first entry z of the pair is
non-zero, they cannot leave the volume, This may be one reason why disclination lines,
which are characteristic for the nematics, do not escape through the boundary. There may
further be terms in the Frank—Oseen energy [3] preventing it, but also small deviations from
the tangential boundary conditions.

The situation changes considerably with conical bounda:y conditions, A turning into S'.
The case has intensively been investigated in hybrid alignment films by Lavrentovich and
Rozhkov [20]. The sequence becomes

B et B omeetsty B ot 4 omeed 4 omersh 4 omeh oL
2Z — ZxZ - z - Zz - Zs - 0 ( 4)
= 4]

(z, u) = u w = w > 0.

z = (z,0) v

As in the case of tangential boundary conditions, bulk point singnlarities cannot leave the
volume through the boundary, and of the surface point singularities only the type (z, 0)
can move into the bulk. However, none of the boundary point singularities now extends
along a singular line into the bulk (ker (i;) = m (5!)). This is quite obvious, as bulk line
defects of integer winding number can vanish by escape to the third dimension. Bulk line
singularities cannot terminate on the surface (Im ({;) = 0) and cannot escape through the
boundary any more (ker (/) = 0). They either form closed loaps, or they contribute to the
one stable surface line singularity existing, It forms 2 180° Bloch wall. Representatives of
the two classes of paths in m; (P2, S!) are shown in figure 3.

The situation is still changing for homeotropic, i.e. orthogonal anchoring, A = 1
consisting of one point:

B mey B meetn B o B omed A omeetn 3 omom R
' 2z 27 - 0 = Zy = Zs - 0 ‘ )
H [ b4 g 0 =3 0
w > w = 0.

No bulk point singularities can leave the fluid through the boundary, because ker (j;) = 0.
All surface singularities can move from the surface into the bulk, since Im (ja) = (P2, 1).
There are no stable boundary point singularities (m (1) = 0), and no bulk line defects
can terminate on the surface (Im (i;) = 0) or escape through the surface. They merely
contribute to surface line singularities (Im (1) = 1 (P?, 1)). All surface line defects can
move accordingly into the bulk.

Figure 3. rors ¥V = P2, subspace 4 = §' and
representative loops of the two types of homotopy
elasses of m) (7, §1).
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Finally let us consider the surface defects of dipole-locked superfiuid SHe-A (see
also [12]). The reduced order parameter is a right-handed orthonormal tripod (e, es, I},
where I denotes the angular momentum vector of the Cooper pair. Thus V = SO(3).
The boundary conditions are such that I stands either parallel or antiparallel to the surface,
which implies A = Dy C SO(3). The relative homotopy groups are known from the
defect structure of uniaxial nematic liguid crystals, because J':,,(SO(S) Do) = 7, (P?), and
we obtain the sequence: -

ME0G) B w506, Dw) B mbe) B mGom) I msor. 0w L
0 - 2z - z - Z> - Za — Za
z [ z w = 0

(6)

u = {Zu}mod2 v = v.

The surface point singularities are the well known boojums [21]. They are bound to the
surface and cannot move into the bulk (Im (j,} = ker (82) = (). Boundary point singularities
of odd winding number bound bulk disclination lines (ker (/1) = 2Z < Z). The bulk line
singularities, 360° disclination lines in the tripod, can terminate on the surface and are also
allowed to leave the bulk through the boundary. Finally, there are surface line singularities
which separate domains of oppositely pointing vectors [. They cannot move into the bulk
(as ker (8)) = 0), and are identical with the boundary line defects (3, is bijective).

3. Surfaces inducing a phase transition

As a surface breaks the isotropy of space, it frequently induces a different thermodynamical
phase, and phase transitions as a rule set in from the surface.

If there are different phase structures in the bulk and on the boundary, it is favourable
to describe the reduced order-parameter spaces as coset spaces G/H;, i =1, 2, where G is
the unbroken symmetry group, Hy < G the broken symmetry group in the bulk, and H; the
broken symmetry group on the boundary., For simplicity here we deal with the case that
H; is a subgroup of H;. A standard example—easy to visualize—is the transition of an
isotropic nematic lquid with G = SO(3) to a uniaxial nematic phase, where H = Dy, is
the cylindrical symmetry group of the director, and from there to a biaxial nematic phase
with H> being the dihedral symmetry group Da of a cross. Such a transition is predicted in
theories of surface wetting [22].

Defects in the bulk that develop in two successive phase transitions with symmetry
breaking steps & — H| — H, have been treated in [14-16]. There, one has investigated
the connectivity properties of the space G/ H,, which forms a fibre bundle with base space
G/Hl, fibre H,/Hy, and projection

P G/Hz —y Gle

gH, v gH. @

The homotopy groups of the three spaces are related by an exact sequence similar to
that of (1) [18]:

- B 10(G/Hy) 5 7a(GIH) 2% Tacr ([ HD) 5 1ay (G 5 - ®)
Here =,(G/H2) describes defects in the fully broken phase, m,(G/H;) defects in the
partially broken phase, and =, {H;/H) defects which arise from a uniform or singularity
free partially broken phase, denoted as semidefects. The latter vanish in the symmetry
restoring phase transition 2 — 1, which is described by the projection mapping of (7). If
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the partially broken phase 1 contains singularities, these may break in the second step into
semidefects of one dimension more according to the homomorphism A, of (8).

In the case of surfaces inducing a phase transition the ROPS in the bulk is undoubtedly
G/H,, whereas there is a variety of possibilities for the boundary. In the most general
case the ROPS on the boundary is the entire bundle space G/ H,, but anchoring conditions
might reduce it to a subset I/ C G/H-. For a uniaxial nematic liquid crystal with a biaxial
surface this subset could come from tangential anchoring conditions of the major director,
the second axis pointing orthogonal to the surface, and U being P!, which seems natural
from the point of symmetry breaking. I/ can also stem from orthogonal boundary conditions
of the major director with free rotation of the side axes, and then equals H;/H;.

Whereas in all cases the bulk singularities are classified by homotopy groups =, (G/Hy),
and the boundary singularities by =, (U C G/H), the classification of surface point
singularities is done by the homotopy classes of mappings of the hemisphere D? into the
following spaces: .

f: D? —  G/H
g: 8D*=8" —» UCG/H, (9)
flap* = plUog.

Misirpashaev [17] has listed these equations for a special set U.

We denote the set of classes of these mappings, under the assumption that they are
based, sloppily by m2(G/Hy, U). If one is taking exact sequences as for the surface defects
in (1) separately for phase 1 and phase 2, these sets are in between, leading to the following
commuting diagram of mappings: ‘

- = wG/H) - =G/ H2, U) -+ mUy — m(G/H) —

N A
H ! #2(G/H1. U) 4 S (10)
. e ™
+o= m(GAHYY = wo(G/H, pUY s a(pltly — m(G/H) —-

The diagram has to be evalnated on a case to case bas:s Here we do it for the following
wide cldss of transitions:

Denote by A C G/H; the surface order-parameter space of phase 1. If U = p~ 1A, the
fundamental theorem for homotopy groups of fibre bundles [18, p 90] states, that

72 (G/ Hy, UY = mo(G/Hy, A). -ayn

According to the diagram of (10), x,(G/H,;, U} is equal to these two groups. It follows
from this very general result, that the classification of surface singularities remains invariant
in a phase transition, if the boundary order-parameter space is being lifted in the same way
as the bulk ROPS to the bundle space describing the new phase. The statement is valid
whether the transition happens only at the surface or proceeds into the bulk. A construction
of the classifying group according to (9) is not necessary. For the interpretation of the
surface processes the two parallel exact sequences have to be analysed:

— miG/f) — mG/HU) —» ml) = mG/H) - nG/IHRU) - mil) -
4 il + do It (12)
= m(G/H)Y — m(G/H, A) - m{A) - m{(G/H) — =m(G/HLA) - md) -,

If U = G/H, then A = G/H), and there are no surface singularities.
If A = Hy, i.e. a single order-parameter value js allowed on the boundary of phase 1,

then U = Hi/H,. Along a certain chain of the diagram (12) we recover the exact
sequence of (8) for semidefects. The surface point singularities in the generalized sense of
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Volovik [12] turn out to be the bulk point singularities in phase 1 with those semidefects of
7.{U = H,;/H,) attached to the boundary, into which they would break in a phase transition
1—2.

Among the boundary point singularities in 7 ( H; / H) those are of special interest, which
are outside Im (A,): when upon cooling the phase transition proceeds from the surface into
the bulk, they develop into stable bulk line singularities according to the homomorphism
i;. Such boundary point singularities place the seed for Iine singularities in the bulk.

As a particular example let us consider a uniaxial nematic liquid crystal (V, =
SO(3)/Dy) with a biaxial surface (V, = SO(3)/D;) and tangential boundary
conditions A = P!. The lift of this set into SO(3)/D> vields an order-parameter space,
where the major axis of the biaxial cross stays tangential to the surface, and the side axis
rotates freely about it. The boundary order-parameter space U/ is determined in the following
way: place an orthonormal tripod {e1, e, 3} to the surface, with e; and e; in the boundary
plane, and es orthogonal to it. Orient the main director along e, the side axis along es. All
the points of {7 are obtained by rotating the tripod with rotation operators R{x, 8, ¥ = 0},
o, B, ¥ being Eulerian angles, 0 € o, 8 € m. « is the rotation angle about e3, turning e;
into &, B the rotation angle about &),. Due to the identification of points (v, 8 = 0) with
(o, B = =) and of points (& = 0, 8} with (& = 7, 7 — ) (figure 4), the manifold U is the
Klein bottle. These boundary conditions are interesting, as the fundamental group of the
Klein botile is non-abelian: 7 (U) = .%Z A %Z = {(v, ¥)}, v denoting the winding number
for the angle & (i.e. of the major director), # for the angle 8 (i.e. of the side axis). The
semidirect product is defined by '

(v1, u1)(va, uz) = (U1 + va, 2y + (=1)*uz). (13)

The Klein bottle is also the ROPS of the striped plane (which could serve as the boundary
order-parameter space of smectic A liquid crystals in the bookshelf configuration). Due to
its non-abelian fundamental group & singnlarity can change its homotopy label when guided
about another one, as discussed by Poénaru and Toulouse [23] (see also the extensive
discussion of the case in {19, p 199]. The biaxial nematic surface displays the same
features, but has the advantage that the restrictions of the topological defect classification
for systems of broken translational symmetry [9, p 638] do not apply.

180°

o° & 180° .
|3 Figure 4. A Klein bottle as a boundary order-parameter space

for a biaxial nematic surface. Points to be identified are marked.
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The two connected exact sequences of (12) have following form:
b
—>0-~>0—>F—>%ZI\%ZL&,QV—>O—>.--- )
' y I Vo I (14)
- 0 = 2Z - F - iz 5 z - 0>
where Q = {%1, &ioy, oz, ios} denotes the quaternion group, o; a Pauli matrix.
The central part of the diagram is executed in terms of the group elements as

©8) P> (o2 (ios) o
T I | )

v B Qumod2.

Due to the exactness property of the upper row the group F is kernel of
homomorphism i}’, which is thg abelian subgroup of %Z A %Z generated by the elements
(2,00, (1, 1) and {0, 2), i.e. by the 4w-rotations of the biaxial cross. From the fundamental
theorem we know, that F = m(P2, P), which in the exact sequence of (3) has been
identified as 2Z x Z. The second factor denotes the winding number of the major axis
{corresponding to e;) in multiples of 2w and therefore is to be interpreted as the winding
number v, the first one as the sum of v and 4. The isomorphism connecting the two forms
of F hence is

{(2,0),(1,13,00,2)) — 2ZxZ ; 2ZxZ — {2,00,(1,1),(0,2))

(v, u) = (4,0} 3 5,0 = (t,s —1). (16)

It is to be noted, that with an odd winding number of e, there is always connected an
odd winding number of e; (the side axis), hidden in the uniaxial case.

Due to the fundamental theorem the homotopy groups m,(V, A) are identical for all
pairs of sets, which are related by an inverse bundle projection. Thus (P2, P!) shares
these identities not only with (SO(3)/Ds, U = Klein bottle), but also with (i) (52, §') for
a three-dimensional ferromagnet, (i) (SO(3), T?) for a tripod field, and (iii) (SU/ (2),?2).
Here, T~ is the lift of the torus 72 into SU(2) under the canonical projection, and is the
central torus in the foliation of SU(2).

The respective three exact sequences according to (12) are

) ... = 2Z - 2ZxZ — z - 0 >0 =0 ..
) -«- > 0 = 2Z%XZ - ZXZ - Z3 = 0 = 0 — ... Q7N
(i) --- = 0 = 2ZXxZ = 2Z%xZ - 0 —+ 0 = 0 —

" although in cases (ii) and (iii} the symmetrical representation of F is more adequate.
Thus a deeper understanding is obtained of the surface classification for uniaxial nematic
liquid crystals with tangential boundary conditions.
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